Usage of class dependency based feature selection and fuzzy weighted pre-processing methods on classification of macular disease
نویسندگان
چکیده
In this paper, we propose a new feature selection method called class dependency based feature selection for dimensionality reduction of the macular disease dataset from pattern electroretinography (PERG) signals. In order to diagnosis of macular disease, we have used class dependency based feature selection as feature selection process, fuzzy weighted pre-processing as weighted process and decision tree classifier as decision making. The proposed system consists of three parts. First, we have reduced to 9 features number of features of macular disease dataset that has 63 features using class dependency based feature selection, which is first developed by ours. Second, the macular disease dataset that has 9 features is weighted by using fuzzy weighted pre-processing. And finally, decision tree classifier was applied to PERG signals to distinguish between healthy eye and diseased eye (macula diseases). The employed class dependency based feature selection, fuzzy weighted pre-processing and decision tree classifier have reached to 96.22%, 96.27% and 96.30% classification accuracies using 5–10–15-fold cross-validation, respectively. The results confirmed that the medical decision making system based on the class dependency based feature selection, fuzzy weighted pre-processing and decision tree classifier has potential in detecting the macular disease. The stated results show that the proposed method could point out the ability of design of a new intelligent assistance diagnosis system. 2008 Published by Elsevier Ltd.
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA Novel One Sided Feature Selection Method for Imbalanced Text Classification
The imbalance data can be seen in various areas such as text classification, credit card fraud detection, risk management, web page classification, image classification, medical diagnosis/monitoring, and biological data analysis. The classification algorithms have more tendencies to the large class and might even deal with the minority class data as the outlier data. The text data is one of t...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009